To the Readership:

The Sixth International Congress on Cleft Palate and Related Craniofacial Anomalies was held in Jerusalem this past June 18 through 23. The Editor and Editorial Board wish to congratulate Dr. Menachem R. Wexler (a member of the Journal’s Editorial Board) on a very successful Congress, both academically and socially. There were over 400 registrants in attendance from North America, South America, Europe, Asia, and Africa. The planning by Dr. Wexler, his local arrangements committee, and the representatives of Kenes Tours was flawless. Also to be congratulated are all of the Congress delegates who presented over 320 papers, participated on panels and in teaching sessions, and also presented posters, video tapes, and films that covered all areas of multidisciplinary interest. The weather in Jerusalem cooperated fully, and the tours arranged for the Congress delegates were truly spectacular. The delegates were also treated to a stirring sound and light show in the Citadel of the old city of Jerusalem and to exclusive tours of the new museum in the Citadel, the Jerusalem Museum, and the Dead Sea Scrolls. At the Jerusalem Museum, we were addressed by the flamboyant, outspoken, and well-known mayor of Jerusalem, Teddy Kollek. Our final evening, hosted by Dr. and Mrs. Wexler proved to be a festive occasion highlighted by a spectacular multimedia presentation and several hundred delegates trying their hand (and feet) at Israeli folk dancing. The delegates met on the last day of the Congress and voted to hold the next Congress in Australia. The Australian delegation will choose the location, and we hope to announce the location and the date of the Seventh International Congress on Cleft Palate and Related Craniofacial Anomalies as soon as it is available.

The Editor

Reconstruction of the pharynx and esophagus with revascularized segments of jejunum remains a time-proven entity. Most thromboses and subsequent flap failures have occurred within the first 24 hours after revascularization of the flap. What would therefore be desirable is a safe, proven monitoring system to assess the patency of the microvascular anastomoses and subsequent viability of the transferred bowel segment. This paper reports on such a monitoring system, which involves the creation of a surgical window on the anterior cervical flap. The jejunal serosa is tacked to this window, and a thin split-thickness skin graft is placed directly on the bowel. The technique is simple, safe, efficacious, and leaves no significant defect. (Authors’ abstract)

Reprints: Dr. Harold Bafitis
Cincinnati Plastic Surgery Associates
10496 Montgomery Road
Cincinnati, OH 45242

Secondary bone grafting of alveolar clefts has become a well-established procedure. However, little attention has been given to the soft tissue coverage of these grafts. We present our experience with 32 patients in whom gingival mucoperiosteal flaps were used exclusively in conjunction with bone grafting for patients with residual alveolar clefts. The indications and timing of the procedure as well as the steps of the technique are presented. The advantages of bone grafting at the stage of mixed dentition and the superiority of gingival mucoperiosteal flaps, including teeth eruption through the graft, additional teeth support, dental hygiene and esthetic appearance of the alveolar ridge, are discussed. Our results are compared with those obtained with similar or other techniques. (Authors’ abstract)

Reprints: Dr. M. Cohen
Cook County Hospital
Division of Plastic Surgery
1835 West Harrison Street
Chicago, IL, 60612

Congenital absence of the nose (arhinia, congenital nasal atresia) is a rare anomaly that is infrequently described in the literature. Herein we present a case of congenital absence of the nose recently evaluated and treated at Children’s Hospital Medical Center, Cincinnati, OH. Computed tomography and magnetic resonance imaging studies were obtained. To our knowledge, no such radiographic evaluations have been described in patients with congenital absence of the nose. In addition to complete absence of the anterior soft tissues of the nose, thin anterior and thick posterior atretic plates were present. Magnetic resonance imaging was useful in defining the nature of the soft tissue mass that filled the single hypoplastic nasal cavity. The lip, alveolus, and palate were remarkably well developed. A thorough investigation revealed no other congenital defects. At 15 days of life, because of the airway support required and the associated feeding difficulties, a nasal airway was created using a combination of sublabial, transpalatal, and percutaneous approaches. Frequent home dilation of the surgically created opening has been successful in maintaining nasal patency, thus allowing the patient to go without continuous stenting. (Authors’ abstract)

Reprints: Dr. C.M. Myer III
Department of Otolaryngology
Children’s Hospital Medical Center
Elland and Bethesda Ave.
Cincinnati, OH 45229

A low-cost microcomputer (Amiga 1000) and software were used to digitize and analyze slides, high-speed films, and videotapes of laryngeal images. The images were digitized with a 320 horizontal by 200 vertical pixel resolution and at 16 gray levels. Various algorithms were used to analyze the images, including color equalization, color merging, edge detection, and histogram analysis. An example is presented in which the area of a nodule and the area of the glottis are measured using some of the processing techniques and are compared with similar measurements obtained by hand. The quality of the digitized images obtained with this low-cost system is very
good. Simple image-processing techniques, commercially available, are well suited to the analysis of laryngeal images and should permit sophisticated processing of movement of structures within the larynx. (Authors’ abstract)

Reprints: Dr. R.H. Colton
Room 156 WK
Health Science Center
766 Irving Avenue
Syracuse, NY 13210

Patients with Treacher Collins syndrome were studied regarding 10 nasal, one orbital, and four facial measurements, as well as 10 facial proportion indexes. Data from 15 to 24 patients were related to normal values. The most normal feature was found to be the nose. The basic measurements of which were optimal. Because harmony between the nose and the face is a basic requirement of esthetic balance in a healthy face, the nose in these patients is the key for calculating changes in the markedly damaged general framework of the face. Abnormal proportion indexes must be corrected by adjusting the abnormal measurement to its optimal level. Thus, the abnormally short bizygomatic width had to be increased by a mean of 13 to 21 mm. Both the nose and the face were usually normal—long thus producing acceptable proportions in these patients. Some size disproportions were found between the root and the soft nose. Their adjustment should be part of the general plan to correct the face of a patient with Treacher Collins syndrome. (Authors’ abstract)

Reprints: Dr. L. Farkas
Craniofacial Measurement Laboratory
The Hospital for Sick Children
555 University Ave.
Toronto, ON MS5 1X8

The incidence of and factors accounting for relapse in 25 subjects who underwent mandibular setbacks via a bilateral sagittal split osteotomy with rigid fixation were studied. Fourteen had single-jaw operations, and the remaining 11 had concomitant maxillary procedures. Cephalometric radiographs were reviewed preoperatively, immediately postoperatively, and 6 months to 3 years after surgery. Relapse was defined as forward movement of pogonion during the postoperative period. No difference in the movement of the mandible in one- or two-jaw cases was noted. Even with excellent occlusal results, there was a tendency for the mandible (chin point) to rotate forward. In the one-jaw cases, 43.7 percent relapse was noted, whereas a 53.4 percent relapse was seen in the two-jaw cases. A regression analysis showed that the magnitude of setback was the single factor that significantly predicted relapse in one-jaw cases, whereas alteration of the proximal segment accounted for relapse in two-jaw procedures. These results seem interrelated when considering alterations in the spatial arrangement of the muscular tissues and their attachments. (Authors’ abstract)

Reprints: Dr. J Franco
Department of Oral and Maxillofacial Surgery
University of Texas Health Science Center
7703 Floyd Curl Dr.
San Antonio, TX 78284-7908

The authors report a brother and sister born to nonconsanguineous parents. They both had an atrial septal defect and ventricular septal defect. In addition they had short stature, microcephaly, developmental delay, and the same dysmorphic appearance of a short nose, epicanthic folds, a long philtrum, and narrow upper lip. The boy had bilateral choanal hypoplasia and stenosis. (Authors’ abstract)

Reprints: Dr. J.A. Hurst
Department of Paediatric Genetics
Institute of Child Health
30 Guilford St.
London WC1N 1EH
ENGLAND

To determine the reason for the high incidence of nasal sinusitis in patients with cleft palate, the type of cleft, degree of nasal septal deviation, velopharyngeal function, and presence of pharyngeal flap were investigated in relation to nasal sinusitis. We also examined the relationship between the side of sinusitis and the cleft side in patients with unilateral cleft palate. Maxillary sinus development, nasal mucociliary transport, and ciliary beating frequency of ciliated cells were also examined. The saccharin test indicated that nasal mucociliary transport was impaired. This impairment is believed to be one of the reasons for the high incidence of sinusitis in patients with cleft palate. (Authors’ abstract)

Reprints: Dr. Y. Ishikawa
Nagahama Red Cross Hospital
14-7, Miyamae-cho
Nagahama-shi, Shigaken
526 JAPAN

The majority of cephalometric studies of anomalous, craniofacial taxonomy and evaluation is based upon either isolated cases or methods that cannot withstand rigorous scientific scrutiny. A number of techniques have been devised to resolve such deficiencies, although the image quality of lateral cephalographs limits the precision of their measurement. Thus, further advances in the statistical evaluation of anomalous craniofacial forms hinge upon the acquisition of more precise images. (Author’s abstract)

Reprints: Dr. C.L.B. Lavelle
Department of Oral Biology
Faculty of Dentistry
780 Bannatyne Ave.
Winnipeg, MB R3E 0W3

This is an article informing the general practitioners of South Africa about the one-stage correction of facial deformities of Crouzon’s disease. The advantages and disadvantages of this major craniofacial procedure are discussed, with a two-case description that shows some very satisfying results. (Fernandes)

Reprints: Dr. H.W. Losken
Plastic Surgery
Children’s Hospital of Pittsburgh
3705 5th Ave.
Pittsburgh, PA 15213

Computer-assisted medical imaging technologies provide new tools for the study of congenital craniofacial deformities. Three-dimensional surface reconstructions have been developed to simplify the interpretation and improve the utility of computed tomography scans of the head. While three-dimensional reconstructions initially were applied to assist management of craniofacial deformities, these images now are finding utility in the study of unique anomalies, the definition of group characteristics for dysmorphic heads, the differentiation of similar phenotypes, and the documentation of the effects of cranial surgery on craniofacial growth. These findings should assist the formulation and evaluation of hypotheses regarding mechanisms of congenital malformation and deformation. (Authors’ abstract)

Reprints: Dr. Jeffrey L. Marsh
Cleft Palate and Craniofacial Deformities Institute
400 S. Kingshighway
St. Louis, MO 63110

The relationship of the facial nerve to a fistulous tract that represents a Type II first branchial cleft cyst is extremely variable and impossible to predict preoperatively. The approach described in this article is designed to permit total excision of the cleft cyst and fistula with minimal risk of injury to the facial nerve. (Authors’ abstract)

Reprints: Dr. Mark May
Facial Nerve Center
Shadyside Hospital
510 South Aiken Ave.
Suite 210
Pittsburgh, PA 15232

An investigation was conducted to determine whether laryngeal valving economy, as reflected in measures of laryngeal airway resistance during vowel production, varies across adulthood. Sixty healthy men were studied, 10 from each of six age groups—25, 35, 45, 55, 65, and 75 years (±2 years). Results indicated that there are age-related differences in laryngeal airway resistance during vowel production and that these differences are characterized by a lower mean resistance in 75-year-old men than in younger men of the ages studied. This finding provides insight into the impact of age on laryngeal function and has important implications for the evaluation and management of men with voice disorders. (Authors’ abstract)

Reprints: Dr. Thomas J Hixon
Department of Speech and Hearing Sciences
University of Arizona
Tucson, AZ 85721

The present study demonstrated that the task of pressure regulation is attained under the circumstances of sudden oronasal coupling resulting from voluntary lowering of the velum. This is not the same as perturbation produced by the insertion of bite blocks or bleed valves or as velopharyngeal inadequacy associated with cleft palate or acquired defects. Nevertheless, the response to the perceived error or change is the same. Intraoral pressure is maintained at an appropriate level. Whether the response to voluntary loss of velar resistance involves increased respiratory effort, resistance adjustments by other speech structures, or both will be the subject of a future investigation. (Authors’ abstract)

Reprints: Dr. D. Warren
Department of Dental Ecology
and the Dental Research Center
UNC School of Denistry
University of North Carolina
at Chapel Hill
Chapel Hill, NC 27514

This study examined the immediate and postsurgical changes in the hard and soft tissues of the chin after advancement genioplasty by means of oblique osteotomy of the mandibular symphysis. Twenty-three patients who had undergone this procedure were evaluated cephalometrically for up to 6 months after surgery. The results indicated that the position of the genial segment is stable after advancement. There was a good correlation between the amount of hard versus soft tissue change with surgery in the horizontal direction, but a poor correlation in the vertical plane. There was, however, a great amount of variability from one patient to the next in most of the variables examined. Follow-up results were generally very stable. (Authors’ abstract)

Reprints: Dr. Edward Ellis III
Division of Oral and Maxillofacial Surgery
The University of Texas
Southwestern Medical Center
5323 Harry Hines Blvd.
Dallas, TX 75235

In a review of 100 consecutively performed bone grafts to the alveolar cleft, replacement resorption was found in seven teeth adjacent to the cleft. Damage to the periodontal tissues during surgery is considered to be the main cause of this complication; granulation tissue from the bone graft may have some influence. Treatment of the affected teeth eventually includes extraction or surgical removal. To minimize the risk for this complication, the authors suggest that bone grafting should be done when the canine (or lateral incisor) is in an early stage of eruption and that orthodontic uprighting of the medial incisor should be done after surgery. (Authors’ abstract)

Reprints: Dr. Bodil Rune Kakcentralen, MAS S-214 01 Malmo SWEDEN

Feeding problems are known to occur with newborn infants who have cleft palates. The primary reason is inability to suck effectively. A temporary device is needed that can cover the defect to facilitate suction and prevent regurgitation through the nose. An obturator can be made until surgical intervention is planned. This is inserted in the child’s mouth at the initial visit. (Author’s abstract)

Reprints: Dr. A. Samant Department of Restorative Dentistry University of Medicine and Dentistry New Jersey Dental School 110 Bergen St. Newark, NJ 07103

Although attention has been focused for decades on the correction of cleft lip deformities, our knowledge about the etiology of such deformities has remained presumptive. Sixty-six muscle biopsy specimens from cleft lip infants were obtained at the time of primary closure. Histochemical stains, histographic analysis, and electron microscopy were performed. A non-neurogenic muscle atrophy was seen that varied in severity, with muscle fibers near the cleft being the most atrophic and disorganized. Muscle fibers stained with the modified Gomori trichrome technique also demonstrated “ragged red” fibers typical of a mitochondrial myopathy. Electron microscopy confirmed large accumulations of mitochondria distorting the fibrils. These mitochondria also were increased in size and densely packed with cristae. This study thus demonstrates that the muscles in cleft lip deformities are not normal. Instead, they reflect either myopathy in the facial mesenchymal mitochondrion or at least a delay in maturation. We hypothesize that some of the morphologic deformities associated with cleft lip may cause a failure of mesenchymal reinforcement of the facial processes at a critical time in development. (Authors’ abstract)

Reprints: Dr. Stephen A. Schendel Stanford University Medical Center Department of Surgery Division of Plastic and Reconstructive Surgery Stanford, CA 94305

A series of 109 patients was divided according to type of palatal defect, technique of repair (pushback, von Langenbeck, or pushback with island flap), results of standardized multifactorial speech analyses, and effectiveness of primary and secondary operations. Sixty-five patients (60 percent) showed improved speech after the initial repair, with 49 of these rated as “good.” Forty-five percent improved after the von Langenbeck operation, 57 percent improved after the pushback procedure, and 53 percent improved after the pushback/island flap repair. Persistent hypernasal speech was treated with superiorly based pharyngeal flaps in 18 patients with uniform success (p = 0.001). The worst results (after all three techniques) followed the repair of bilateral complete clefts. This experience has tempered our expectations in dealing with cleft palate patients, especially those having bilateral defects. (Authors’ abstract)

Reprints: Dr. Alan E. Seyfer Plastic Surgery Service Walter Reed Army Medical Center Washington, DC 20307-5001

The patient was born with a severe cleft of the right lip, alveolus, and palate. After surgical correction of these defects at a very young age, the patient began a 6-year period of active orthodontic treatment at the Eastman Dental Center. With the cooperation of the patient and his parents, successful results, both dentally and skeletally, have been achieved. The treatment results have been stable during the 3-year period following the initial placement of retention. The postretention records show a molar relationship within normal limits and some return of the original spacing located in the mandibular anterior segment. The bonded “Maryland bar” is still in place, and the cast single-tooth partial is still being used. At the proper time, a fixed permanent bridge is planned. (Authors’ abstract)

Reprints: Dr. Edward P. Snyder
Eastman Dental Center
Department of Orthodontics
625 Elmwood Ave.
Rochester, NY 14620

To study the physiologic basis for deviant resonance in hearing-impaired speakers, cephalometric roentgenography and cineradiography were applied to analyze oropharyngeal relationships during vowels produced in isolation and within a sentence context. The films, synchronized with sound recording, were traced and measured for 10 normal hearing and four hearing-impaired women with deviant resonance. Vocal tract conformations and dimensions were defined by measures of the lips, tongue, mandible, velum, hyoid bone, epiglottis, and laryngeal sinus. Means, standard deviations, and analyses of variance were applied to facilitate descriptions and comparisons between the groups. The hearing-impaired speakers had near normal lip openings for /i/ and /u/ but more open positions for /a/. The tongue tended to retract for the front vowel and front for the back vowel /u/. For high vowels, most of the hearing-impaired speakers had an elevated hyoid, an unusually large vertical dimension between hyoid and laryngeal sinus, and a retracted tongue root, which was associated with a marked retraction or deflection of the epiglottis toward the pharyngeal wall. The cine analysis of the normal hearing speakers showed rather well defined and consistent shifts in tongue position for the front vowels produced in the sentence context. The hearing-impaired speakers with deviant resonance showed greater variation among speakers in tongue body position and a significant retrusion of the dorsum of the tongue at a site significantly lower than observed in hearing speakers. The consistent tongue root retraction during static as well as dynamic speech production is interpreted as support for Boone’s hypothesized cause of pharyngeal resonance in speech of the hearing impaired. (Authors’ abstract)

Reprints: Dr. Robert Whitehead
Department of Communication
Research NTID/RIT
One Lomb Memorial Dr.
Rochester, NY 14623

Patients with the Beckwith-Wiedemann syndrome have numerous anomalies which vary somewhat from case to case. The most common presentation is exomphalos, macroglossia, and somatic gigantism. Although cleft palate in association with this syndrome has been rarely reported, we have observed six patients with cleft palate in 10 patients who were diagnosed with the Beckwith-Wiedemann syndrome. The literature is reviewed and discussed. (Authors’ abstract)

Reprints: Dr. T. Takato
Department of Plastic Surgery
Shizuoka Children’s Hospital
860 Urushiyama, Shizuoka-shi
Shizuoka Prefecture 420
JAPAN

The cupid’s bow is an important feature of the normal upper lip, and every effort should be made to reconstruct it during initial cleft lip surgery or trauma repair. However, a secondary surgical procedure is often necessary to improve the appearance and symmetry in the
cupid’s bow area. For this purpose, the authors present a quadrilateral type of interposition flap that can be used in both unilateral and bilateral cupid’s bow reconstruction. This procedure is applicable only when adequate vermilion is available. (Authors’ abstract)

Reprints: Dr. H.G. Thomson
Division of Plastic Surgery
The Hospital for Sick Children
555 University Ave.
Toronto, ON M5G 1X8

This is another example on international peer review. The speech results produced at the Zurich University Dental Clinic and Children’s Hospital were studied by representatives from the Department of Otolaryngology of the University of Iowa Hospitals. Thirty-seven of the 54 complete unilateral cleft lip– palate patients, 6–16 years of age, were assessed by well controlled verbal methods and observations of nasal grimacing. Nasendoscopy and videofluoroscopy were not used. The reported speech results are exceptionally high, with 94.5 percent of the patients exhibiting adequate to marginal velopharyngeal competence (40.5 percent competent, 54.1 percent marginal). (Lindsay)

Reprints: Dr. D.R. Van Demark
Department of Otolaryngology
University Hospitals
Iowa City, IA 52242

Anthropometry remains an efficient, noninvasive method for describing craniofacial morphology in spite of the appearance of more sophisticated technologies. The major advantage afforded by anthropometry is its technical simplicity, a fact that makes it a readily available tool for evaluating patients, planning facial surgery, or delineating basic features of craniofacial syndromes. Anthropometry lacks the detail of more powerful technologies, but it is better suited for populational studies because of the availability of comparative, normal databases. The standard z-scores produced by such comparisons lend themselves to multivariate analysis. This type of comparative analysis is not yet possible for computerized tomography, three-dimensional imaging, or photogrammetry. To illustrate the utility of this technique, an example is cited from an ongoing study of hypohidrotic ectodermal dysplasia (HED) in which anthropometry reveals details of facial morphology overlooked in previous studies. These include the presence of reduced facial height and a striking reduction in the size of the facial features in spite of the fact that facial widths are comparatively normal. Gene carriers show a similar, although nonidentical, pattern of defects. Like all morphometric approaches, anthropometry has its limitations. Well designed protocols minimize these limitations by incorporating multiple facial dimensions in the analysis and by emphasizing careful collection of data with standard instruments and methodology. (Author’s abstract)

Reprints: Dr. Richard E. Ward
Department of Oral Facial Genetics
Indiana University School of Dentistry
Ball Residence 026
Indianapolis, IN 46223

A major problem for the patient with Möbius’ syndrome is the inability to smile. With the development of vascularized muscle transplantation, the possibilities for improved facial animation were explored. Muscle transplantation was carried out in seven patients; innervation was provided by the hypoglossal nerve, by the motor nerve to the masseter muscle, or in one patient, by a transfacial nerve graft. In this article the technical aspects of the procedure as well as the results are described in detail. (Authors’ abstract)

Reprints: Dr. R. Zuker
Division of Plastic Surgery
The Hospital for Sick Children
Ste 1524 555 University Ave.
Toronto, ON M5G 1X8
The Cleft Palate Journal Announcement Policy

The Cleft Palate Journal is pleased to publish announcements of meetings and educational programs sponsored by professional societies, universities, and hospitals. The meeting must pertain to cleft palate or to other craniofacial anomalies. The information should be limited to the title of conference, sponsoring group, location, date, a brief description of the meeting, and the name and address of a person to contact for further information. Send announcements to Nancy C. Smythe, Executive Director, American Cleft Palate-Craniofacial Association, 1218 Grandview Avenue, Pittsburgh, PA 15211 at least 120 days prior to publication.

FUTURE ACPA MEETINGS

1990—St. Louis, Missouri, May 13–18
1991—Hilton Head, South Carolina, March 15–22
1992—Portland, Oregon, May 11–16

1990 ANNUAL MEETING OF THE AMERICAN CLEFT PALATE–CRANIOFACIAL ASSOCIATION

The 47th Annual Meeting of the American Cleft Palate–Craniofacial Association will be held Tuesday, May 15 through Friday, May 18, 1990 at the Adams Mark Hotel in St. Louis, Missouri. A symposium on "The Facial Skeleton in Clefts" will be held Sunday, May 13 and Monday morning, May 14 prior to the meeting. The 1990 program will follow a traditional format, beginning with a Welcoming Reception the evening of Monday, May 14. General sessions, concurrent specialty sessions, study sessions, a videotape forum, poster sessions, and a special session for junior investigators will run through Friday noon. Suggestions and comments about the general conduct of the meeting are welcome and should be directed to the 1990 Program Committee chairperson, Mary Anne Witzel, Ph.D., The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada MSG 1X8; telephone (416) 598-6100. Registration information will be sent to all members of ACPA and to subscribers of the Cleft Palate Journal in early February 1990.

CORRECTION OF MAXILLOFACIAL DEFORMITIES

The American Cleft Palate-Craniofacial Association and the American Society of Maxillofacial Surgeons will sponsor a symposium and workshop on Correction of Maxillofacial Deformities April 26–28, 1990 at the Grand Hyatt Hotel in New York, New York. Presentations will focus on diagnosis, treatment planning, orthodontia, and surgery in relation to maxillofacial deformities. A half-day program will focus on Hemifacial Microsomia. A hands-on workshop with power equipment will emphasize practical applications. Registration information will be available through the ACPA National Office in early January.

CLEFT PALATE FOUNDATION RESEARCH GRANT

The Cleft Palate Foundation (CPF) has established the CPF Research Support Grant sponsored by the Peer Foundation, Florham Park, NJ. This grant is coordinated by the CPF Committee on Research Grants. The purpose of the grant is "to (a) aid in the development of scientific investigators who are committed to problems related to cleft lip and palate and other craniofacial abnormalities and (b) encourage research and projects of significance to cleft lip and palate and other craniofacial abnormalities." The grant covers a 1-year period and will be awarded annually, with a maximum allocation of $5,000 per year. Funds are to be used for direct project support (i.e., technical assistance and supplies). Requests for additional awards by the same individual will be judged each year on the basis of a new application. Each applicant must arrange for acceptance at an institution engaged in health care and/or research. Each investigator is directly responsible to the institution for proper management of funds and project performance. Applicants must have attained a professional and/or scientific degree and completed an accredited training program related to the disciplines recognized by the American Cleft Palate–Craniofacial Association (ACPA). Priorities for the grant will be given to young investigators (candidates who have less than 5 years experience since finishing their specialty professional training or Ph.D., etc.) who must be members of the ACPA. Grant applications will be evaluated in nationwide competition and final selection of the grant recipient will be made by the CPF Committee on Research Grants.
All applications will be judged based on the quality of the proposed project, including its relevance, significance, originality, scientific basis, feasibility and the support of a local institution, applicant's previous professional record; his or her demonstrated commitment and promise as a researcher, teacher, or clinician; and the level of commitment to the proposed project. Deadline for receipt of completed applications is December 1, 1989. Proposals will be reviewed at the annual ACPA meeting the following Spring for payment to begin July 1. The final selection will be made by the CPF Committee on Research Grants. Information and applications should be requested from the American Cleft Palate–Craniofacial Association, 1218 Grandview Avenue, Pittsburgh, PA 15211.

THE SAUL KAMEN SEMINAR IN THE MANAGEMENT AND TREATMENT OF THE DEVELOPMENTALLY DISABLED PATIENT

The Department of Dentistry, Long Island Jewish Medical Center will sponsor this program, taught by an interdisciplinary faculty, on November 12, 13, and 14, 1989. This three-day seminar will emphasize the clinical management of patients with a wide range of physical and mental disabilities. The curriculum is designed to meet the needs of general practitioners, specialists, academicians, institutional dentists and dental hygienists. Tuition is $395 ($225 for residents, dental auxiliaries, and students). For further information contact: Ann J. Boehme, Assoc. Director for Continuing Education, Long Island Jewish Medical Center, New Hyde Park, NY 11042, (718) 470-8650.

EARLY VERSUS LATE PALATAL CLOSURE

An international cleft palate symposium on "Early Versus Late Palatal Closure" will be held in Winnipeg, Manitoba, Canada on March 16 and 17, 1990. For further information contact: Patrick T. Alexander, Ph.D., Director, Department of Communication Disorders, Health Sciences Centre, FE207, 685 William Avenue, Winnipeg, Manitoba R3E 0Z2, Canada, (204) 787-4212.

INTERNATIONAL SYMPOSIUM ON THE INTERDISCIPLINARY MANAGEMENT OF COMPLEX CRANIOFACIAL DISORDERS

Montefiore Medical Center and the Albert Einstein College of Medicine announce a symposium with an eminent international faculty from multiple disciplines, including plastic surgery, neurosurgery, developmental biology, oral surgery, orthodontics, speech pathology, otolaryngology, pediatrics, clinical genetics, dysmorphology, and other specialties. The visiting faculty includes Derek Bruce, Maurice Choux, M. Michael Cohen Jr., Edward Ellis, Fred Epstein, C. DiRocco, John Jane, Daniel Marchac, Joseph McCarthy, Melvin Moss, Ian Munro, Kenneth Salyer, Luis Schut, Kathy Sulik, Timothy Turvey, Karin Vargervik, Linton Whitaker, and Mary Anne Witzel. The host faculty includes Michael Lewin, Craig Hall, James Goodrich, Ravelo Argamaso, George Cisneros, Sidney Eising, Robert Marion, Rosalie Goldberg, Karen Goldberg-Kushner, and Robert Shprintzen. The symposium will be held in New York City from March 28 to March 31, 1990. For further information, contact Dr. Craig Hall, Dr. James Goodrich, or Dr. Robert Shprintzen, Center for Craniofacial Disorders, Montefiore Medical Center, 111 East 210 Street, Bronx, NY 10467, or call (212) 920-4781.

BONE GRAFTING IN CLEFT DEFORMITY

The International Association of Maxillofacial Surgeons in Training will hold its second symposium in Luxembourg on June 16, 1990. Confirmed speakers include M. El Deeb, S. Hillerup, U. Joos, R. Kole, G. Semb, and B. Wittensberg. Abstracts are welcome and will be reviewed by the scientific committee on November 30, 1989. For further information please contact: Dr. M. Moomaerts or Dr. C. Politis, IAMFST, c/o Afd. Mond-Kaak-en Aangezichtsheelkunde, St. Jansziekenhuis, Schiepse Box 2, B-3600 GENK, Belgium.

THIRD INTERNATIONAL SYMPOSIUM ON DENTOFACIAL DEVELOPMENT

This symposium will be held at The Royal Dental College in Aarhus, Denmark, June 23–24, 1990. This interdisciplinary symposium will focus on: excessive vertical dentofacial development and its treatment, respiratory problems and dentofacial development, and TMJ disorders and dentofacial development. For further information contact: Third International Symposium on Dentofacial Development, Department of Orthodontics, Attn: Dr. A.E. Athanasiou, DK-8000, Aarhus C, Denmark.
Author Index

Ârnason, Alfreo
X-Linked Cleft Palate and Ankyloglossia in an Icelandic Family, 3.

Arndt, Erika
Facial Reconstruction in Down Syndrome: Perceptions of the Results By Parents and Normal Adolescents, 186.

Baca, Dan
Facial Musculoskeletal Asymmetry in Hemifacial Microsomia, 292.

Bardach, Janusz
Cleft Lip and Palate and Related Disorders: Issues for Future Research of High Priority, 141.
Editorial, 161

Bassila, Maha K.
The Association of Facial Palsy and/or Sensorineural Hearing Loss in Patients With Hemifacial Microsomia, 287.

Bevis, Richard R.

Bixler, David
A Study of Cephalometric Features in Cleft Lip-Cleft Palate Families I: Phenotypic Heterogeneity and Genetic Predisposition in Parents of Sporadic Cases, 318.

Bjornsson, Arni
X-Linked Cleft Palate and Ankyloglossia in an Icelandic Family, 3.

Broder, Hillary
Self-Concept of Early Primary School Age Children With Visible or Invisible Defects, 114.

Carey, John C.
Invited Editorial, 1.

Cohen, M. Michael Jr.
Oculoauriculovertebral Spectrum: An Updated Critique, 276.

Cook, Kaye V.
The Psychosocial Adjustment of Pediatric Craniofacial Patients After Surgery, 201.

Cooter, Rodney D.
Tessier Clefts Revisited With a Third Dimension, 163

Coston, Gale N.
Incidence and Prevalence of Cleft Lip and Palate: What We Think We Know, 242.

Creaghead, Nancy A.
The Effects of Le Fort I Osteotomy With Maxillary Movement on Articulation, Resonance, and Velopharyngeal Function, 193

Dahllof, Goran
Caries, Gingivitis, and Dental Abnormalities in Preschool Children With Cleft Lip and/or Palate, 233.

Dalston, Rodger M.
Screening of Velopharyngeal Inadequacy by Differential Pressure Measurements, 42.

D'Antonio, Linda L.

Datubo-Brown, Difini D.

David, David J.
Tessier Clefts Revisited With a Third Dimension, 163.

Deal, Randolph
Proplast as a Pharyngeal Wall Implant to Correct Velopharyngeal Insufficiency, 119.

Dolan, Edward A.
The Role of Pressure Flow and Endoscopic Assessment in Successful Palatal Obturator Revision, 56.

El Deeb, Mahmoud E.

El Deeb, Mohamed E.

Ferraro, Natal F.
A Retrospective Analysis of Growth of the Constructed Condyle-Ramus in Children With Hemifacial Microsomia, 312.

Fiala, Kathleen J.
Partitioning Model Nasal Airway Resistance Into Its Nasal Cavity and Velopharyngeal Components, 327.

Figueroa, Alvaro A.
Longitudinal Changes in Cranial Base Angulation in Mandibulofacial Dysostosis, 31.

Fraser, F.C.
Research Revisited, 255.

Freedlander, Eric
The Fate of Buccal Mucosal Flaps in Primary Palatal Repair, 110.

Goldberg, Rosalie
The Association of Facial Palsy and/or Sensorineural Hearing Loss in Patients With Hemifacial Microsomia, 287.

Gomez-Marin, Olando

Gravit, William H.
The Effects of Le Fort I Osteotomy With Maxillary Movement on Articulation, Resonance, and Velopharyngeal Function, 193.

Grames, Lynn M.
Intravelar Veloplasty: A Perspective Study, 46.

Griffin, G.
Growth After Construction of the Temporomandibular Joint in Children With Hemifacial Microsomia, 303.

Guyette, Thomas W.
Partitioning Model Nasal Airway Resistance Into Its Nasal Cavity and Velopharyngeal Components, 327.

Hairfield, W. Michael
Dimensions of the Cleft Nasal Airway in Adults: A Comparison With Subjects Without Cleft, 9.

Hanada, Koogi

Harris, Edward F.
Odontometrics of the Permanent Teeth in Cleft Lip and
INDEXES TO VOLUME 26, 1989 357

Palate: Systemic Size Reduction and Amplified Asymmetry, 36.
Henrikson, Carl O.
Absorbed Doses and Energy Imparted From Radiographic Examination of Velopharyngeal Function During Speech, 105.
Hoke, James A.
The Role of Pressure Flow and Endoscopic Assessment in Successful Palatal Obturator Revision, 56.
Holtman, Barbel
Intravelar Veloplasty: A Perspective Study, 46.
Ideberg, Margareta
Caries, Gingivitis, and Dental Abnormalities in Preschool Children With Cleft Lip and/or Palate, 233.
Isberg, Annika
Absorbed Doses and Energy Imparted From Radiographic Examination of Velopharyngeal Function During Speech, 105.
Jackson, Ian T.
The Fate of Buccal Mucosal Flaps in Primary Palatal Repair, 110.
Johnston, Malcolm C.
Julin, Per
Absorbed Doses and Energy Imparted From Radiographic Examination of Velopharyngeal Function During Speech, 105.
Kaye, Celia I.
Oculoauriculovertebral Spectrum: An Updated Critique, 276.
Kimes, Kyle R.
A Test of Two Midfacial Growth Models Using Path Analysis of Normal Human Fetal Material, 93.
Klaiman, Paula
Facial Reconstruction in Down Syndrome: Perceptions of the Results By Parents and Normal Adolescents, 186.
Kraepelien, Thomas
Absorbed Doses and Energy Imparted From Radiographic Examination of Velopharyngeal Function During Speech, 105.
Kummer, Ann W.
Changes in Articulation and Resonance After Tongue Flap Closure of Palatal Fistulas: Case Reports, 51.
The Effects of Le Fort I Osteotomy With Maxillary Movement on Articulation, Resonance, and Velopharyngeal Function, 193.
Lee, Linda
The Effects of Le Fort I Osteotomy With Maxillary Movement on Articulation, Resonance, and Velopharyngeal Function, 193.
Linville, Raymond N.
Voice Perturbation of Children With Perceived Nasality and Hoarseness, 226.
Marsh, Jeffrey L.
Intravelar Veloplasty: A Perspective Study, 46.
Facial Musculoskeletal Asymmetry in Hemifacial Microsomia, 292.
McCormack, Harold
Cleft Lip and Palate: New Directions for Research, 145.
Moder, Thomas
Caries, Gingivitis, and Dental Abnormalities in Preschool Children With Cleft Lip and/or Palate, 233.
Mooney, Mark P.
A Test of Two Midfacial Growth Models Using Path Analysis of Normal Human Fetal Material, 93.
Morr, Kathleen E.
Screening of Velopharyngeal Inadequacy by Differential Pressure Measurements, 42.
Moore, Mark H.
Tessier Clefts Revisited With a Third Dimension, 163.
Morris, Hughlett L.
Cleft Lip and Palate and Related Disorders: Issues for Future Research of High Priority, 141.
Mulliken, John B.
Deepithelialized Mucosal-Submucosal Flaps to Correct the "Whistling Lip" Deformity, 136.
Preface, 275.
A Retrospective Analysis of Growth of the Constructed Condyle-Ramus in Children With Hemifacial Microsomia, 312.
Munro, Ian R.
Growth After Construction of the Temporomandibular Joint in Children With Hemifacial Microsomia, 303.
Muntz, Harlan R.
Neale, Henry W.
Changes in Articulation and Resonance After Tongue Flap Closure of Palatal Fistulas: Case Reports, 51.
Oelschlaeger, Mary
Proplast as a Pharyngeal Wall Implant to Correct Velopharyngeal Insufficiency, 119.
Ohkiba, Takanobu
Pell, Lewis
Editorial, 273.
Peterson-Falzone, Sally J.
Longitudinal Changes in Cranial Base Angulation in Mandibulofacial Dysostosis, 31.
Phillips, Christopher J.
Phillips, J.H.
Growth After Construction of the Temporomandibular Joint in Children With Hemifacial Microsomia, 303.
Pillemer, Francine G.
The Psychosocial Adjustment of Pediatric Craniofacial Patients After Surgery, 201.
Posnick, Jeffrey C.
Patterns and Location of Velopharyngeal Valving Problems: Atypical Findings on Video Nasopharyngoscopy, 63.
Province, Michael A.
Ramstad, Tore
Periodontal Condition in Adult Patients With Unilateral Complete Cleft Lip and Palate, 14.
Ranalli, Dennis N.
Evaluation of Craniooromandibular Dysfunction in Children 6 to 10 Years of Age With Unilateral Cleft Lip or Cleft Lip and Palate: A Clinical Diagnostic Adjunct, 332.
Raywood, Eileen R.
A Study of Cephalometric Features in Cleft Lip-Cleft Palate Families I: Phenotypic Heterogeneity and Genetic Predisposition in Parents of Sporadic Cases, 318.

Riski, John E.
The Role of Pressure Flow and Endoscopic Assessment in Successful Palatal Obturator Revision, 56.

Rodgers, Christine M.
Deepithelialized Mucosal-Submucosal Flaps to Correct the “Whistling Lip” Deformity, 136.

Rollnick, Beverly R.
Oculoauriculovertebral Spectrum: An Updated Critique, 276.

Sayetta, Rona B.
Incidence and Prevalence of Cleft Lip and Palate: What We Think We Know, 242.

Salyer, Kenneth E.
The Use of Videonasopharyngoscopy for Biofeedback Therapy in Adults After Pharyngeal Flap Surgery, 129.

Shprintzen, Robert J.
Editorial, 85.
Research Revisited, 148.

Siegel, Michael I.
A Test of Two Midfacial Growth Models Using Path Analysis of Normal Human Fetal Material, 93.

Smiley, Steven J.

Smith, Bonnie E.
Partitioning Model Nasal Airway Resistance Into Its Nasal Cavity and Velopharyngeal Components, 327.

Smith, Lynn R.
Screening of Velopharyngeal Inadequacy by Differential Pressure Measurements, 42.

Speight, Harold S.

Stool, Sylvan E.
Research Revisited, 344.

Strauss, Ronald P.
Self-Concept of Early Primary School Age Children With Visible or Invisible Defects, 114.

Stride, Janet L.
The Effects of Le Fort I Osteotomy With Maxillary Movement on Articulation, Resonance, and Velopharyngeal Function, 193.

Stringer, David A.
Comparison of Multi-View Videofluoroscopy and Nasopharyngoscopy in the Assessment of Velopharyngeal Insufficiency, 88.

Sulik, Kathleen K.

Suzuki, Akira
A Jointed Fan-Type Expander: A Newly Designed Expansion Appliance for the Upper Dental Arch of Patients With Cleft Lip and/or Palate, 239.

Takahama, Yasuhide
A Jointed Fan-Type Expander: A Newly Designed Expansion Appliance for the Upper Dental Arch of Patients With Cleft Lip and/or Palate, 239.

Tippett, Patricia
X-Linked Cleft Palate and Ankyloglossia in an Icelandic Family, 3.

Tobe, Judy
The Use of Videonasopharyngoscopy for Biofeedback Therapy in Adults After Pharyngeal Flap Surgery, 129.

Tobiasen, Joyce M.
Scaling Facial Impairment, 249.

Todhunter, John
A Test of Two Midfacial Growth Models Using Path Analysis of Normal Human Fetal Material, 93.

Trost-Cardamone, Judith E.
Coming to Terms With VPI: A Response to Loney and Bloem, 68.

Turvey, Timothy A.

Ussisoo-Joandi, Reet
Caries, Gingivitis, and Dental Abnormalities in Preschool Children With Cleft Lip and/or Palate, 233.

Vanderas, Apostole P.
Evaluation of Craniomandibular Dysfunction in Children 6 to 10 Years of Age With Unilateral Cleft Lip or Cleft Lip and Palate: A Clinical Diagnostic Adjunct, 332.

Vannier, Michael W.
Facial Musculoskeletal Asymmetry in Hemifacial Microsomia, 292.

Vento, A. Ronald
A Retrospective Analysis of Growth of the Constructed Condyle-Ramus in Children With Hemifacial Microsomia, 312.

Ward, Richard E.
A Study of Cephalometric Features in Cleft Lip-Cleft Palate Families I: Phenotypic Heterogeneity and Genetic Predisposition in Parents of Sporadic Cases, 318.

Warren, Donald W.
Dimensions of the Cleft Nasal Airway in Adults: A Comparison With Subjects Without Cleft, 9.
Screening of Velopharyngeal Inadequacy by Differential Pressure Measurements, 42.

Weinrich, Martin C.
Incidence and Prevalence of Cleft Lip and Palate: What We Think We Know, 242.

Werner, Scott P.
Odontometrics of the Permanent Teeth in Cleft Lip and Palate: Systemic Size Reduction and Amplified Asymmetry, 36.

Witzel, Mary Ann
Patterns and Location of Velopharyngeal Valving Problems: Atypical Findings on Video Nasopharyngoscopy, 63.
Comparison of Multi-View Videofluoroscopy and Nasopharyngoscopy in the Assessment of Velopharyngeal Insufficiency, 88.
The Use of Videonasopharyngoscopy for Biofeedback Therapy in Adults After Pharyngeal Flap Surgery, 129.

Wolford, Larry M.
Proplast as a Pharyngeal Wall Implant to Correct Velopharyngeal Insufficiency, 119.

Zajac, David J.
<table>
<thead>
<tr>
<th>A</th>
<th>Alveolar clefts, 100–104</th>
<th>Facial palsy, 287–291</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankyloglossia, 3–8</td>
<td>Facial reconstruction, 186–192</td>
<td></td>
</tr>
<tr>
<td>Audiograms, 48</td>
<td>Fiberoptic nasopharyngoscopy, 217–225</td>
<td></td>
</tr>
</tbody>
</table>
| B | Bilateral clefts, 146 | G

Genetic markers, 3–4	Genetic predisposition, 318–324
Biofeedback, 129–135	Genetics, molecular, 1–2
Black African population, 339–343	Gingival bleeding, 16
Buccal mucosal flaps, 110–113	Gingival pockets, 16
Canine teeth, 17–18, 100–104	Gingivitis, 233–238
Cardiovascular anomalies, 282–283	Grafted alveolar clefts, 100–104
Central incisors, 17	H

Hearing, 287–291	Hemifacial microsomia
Central nervous system, 282	facial musculoskeletal asymmetry in, 292–301
Check pressure, 28, 30	facial palsy and/or sensorineural hearing loss, 287–291
Children	growth after construction of temporomandibular joint in children, 303–311
caries, gingivitis, and dental abnormalities, 233–238	growth of constructed condyle-ramus in children, 312–317
craniofacial dysfunction with unilateral clefts, 332–337	HFM see Hemifacial microsomia
growth after construction of temporomandibular joint with hemifacial microsomia, 303–311	Hoarseness, 226–232
growth of constructed condyle-ramus with hemifacial microsomia, 312–317	Hypoplasia, 293, 297
psychosocial adjustment of craniofacial patients, 201–208	Iceland, X-linked cleft palate and ankyloglossia in, 3–8
Cluster analysis, 320–323	Incisors, central, 17
Condyle-ramus, 312–317	Intravelar veloplasty, 46–50
Cortisone-cleft palate model, 255	J

| Jointed fan-type expander, 239–241 |
| L

| Le Fort I osteotomy, 193–200 |
| M

Mandibular dysmorphology, 293, 299	Mandibular movements, 333
Mandibulofacial dysostosis, 31–35	Maxillary dental arch, 21–30, 146
Maxillary movement, 193–200	Microsoma, hemifacial see Hemifacial microsomia
Microsoma, hemifacial see Hemifacial microsomia	Midfacial growth models, 93–99
Miller syndrome, 209–216	Molecular genetics, 1–2
Molecular genetics, 1–2	Multifactorial threshold, 255, 256
Muscle palpation, 333	Muscle volume, 293, 297, 300–301
Muscle volume, 293, 297, 300–301	Musculoskeletal asymmetry, facial, 292–301
Musculoskeletal asymmetry, 292–301	N

| Nager syndrome, 209–216 |
| Nasal airway, 143–144 |
| cleft, 9–12 |
| palate, 57 |
| resistance, 327–330 |
| Nasal cavity, 327–330 |
| Nasality, 226–232 |
| Nasopharyngoscopy for biofeedback therapy, 129–135 |
| for evaluation of velopharyngeal function, 217–225 |
| for evaluation of velopharyngeal insufficiency, 88–91 |
| flexible fiberoptic, 217–225 |
| and velopharyngeal valving problems, 63–67 |
| O

| Occlusal traits, 250–251 |
| Oculoauriculovertebral spectrum, 276–284 |
| clinical manifestations, 281–283 |
| epidemiology, 277 |
| etiology, 277–278 |
| nosologic problems, 276–277 |
| overlapping conditions, 283–284 |
| pathogenesis, 278–281 |
| Odontometrics, of permanent teeth, 36–41 |
| Orthodontic intervention, 142 |
| Orthognathic appearance, 251 |
| Osseous dysmorphology, 293, 297 |
| Osteotomy, Le Fort I, 193–200 |
| P

| Palatal fistulas, 51–55 |
| Palatal obturator revision, 56–61 |
| Palatal repair, primary, 110–113 |
| Palsy, facial, 287–291 |
| Path analysis, 94–95 |
| Pediatric patients see Children |
| Periodontal condition, 14–19 |
| Pharyngeal flap surgery, 129–135 |
| Pharyngeal wall implant, 119–128 |
| Phenotypic heterogeneity, 318–324 |
| Plaque, 16 |
| Pressure flow, 56–61 |
| Prevalence, 242–248 |
| Primary palatal repair, 110–113 |
| Proplast, 119–128 |
| Prosthodontic procedures, 58, 59 |
| Pulp testing, 100–104 |
| R

| Radiography, 105–109, 313, 314 |
| Research, 141–149, 255–257, 344–345 |
| Resonance, 51–55, 193–200 |
| S

| Saliva, 234, 235 |
| Scaling facial impairment, 249–254 |
Sensorineural hearing loss, 287–291
Skeletal alterations, 282
Speech
and intravelar veloplasty, 47
nasality and hoarseness, 226–232
and palatal obturator revision, 56–57
and velopharyngeal function, 105–109
see also Articulation; Resonance
Surgery, 142
buccal mucosal flaps, 110–113
facial reconstruction for Down syndrome, 186–192
hemifacial microsomia, 313–314
intravelar veloplasty, 48
pharyngeal flap, 129–135
for velopharyngeal insufficiency, 120–124
Swallowing, 21–30
T
Temporomandibular joint, 303–311, 333
Tessier clefts, 163–185
Tongue
contact patterns at rest, 23–24
contact patterns during swallowing, 24–25, 27–28
flap closure, 51–55
movement, 25, 28, 30
position at rest, 25, 27
swallowing pattern, 21–30
Treacher Collins syndrome, 209–216
U
Unilateral clefts
and craniomandibular dysfunction in children, 332–337
periodontal condition in adults, 14–19
Upper dental arch, 239–241
V
Velopharyngeal component, 327–330
Velopharyngeal function, 143
flexible fiberoptic nasopharyngoscopy for evaluation, 217–225
and Le Fort I osteotomy, 193–200
radiographic examination of, 105–109
Velopharyngeal inadequacy, 42–44, 68–70
Velopharyngeal incompetence, 69
Velopharyngeal insufficiency, 68–69
Proplast to correct, 119–128
videofluoroscopy and nasopharyngoscopy in assessment of, 88–91
Velopharyngeal valving, 63–67
Videofluoroscopy, 88–91, 195
Video nasopharyngoscopy, 63–67, 129–135
Voice perturbations, 226–232
W
“Whistling lip” deformity, 136–140
X
X-linked cleft palate, 3–8
CHARLES C THOMAS • PUBLISHER

- Hanson, Marvin L. & Richard H. Barrett—FUN-
 DAMENTS OF OROFACIAL MYOLOGY. '89, 380
 pp. (6¾ x 9¾), 49 ill., 23 tables, $54.75.

- Farkas, Leslie G. & Ian R. Munro—ANTHROPO-
 METRIC FACIAL PROPORTIONS IN MEDICINE.
 '87, 368 pp. (8½ x 11), 86 ill., 215 tables, $72.50.

- Dronamraju, Krishna R.—THE FOUNDATIONS OF
 HUMAN GENETICS. '89, 226 pp. (7 x 10), 32 ill.,
 5 tables, $40.75.

- Mysak, Edward D.—PATHOLOGY OF THE SPEECH
 SYSTEM: A System Approach to Organic Speech
 Disorders. (2nd Ed.) '89, 522 pp. (7 x 10), 58 ill.,
 9 tables, about $68.75.

- Halley, M. Martin, Robert J. Fowks, F. Calvin Bigles
 & David L. Ryan—MEDICAL MALPRACTICE SOLU-
 TIONS: Systems and Proposals for Injury Compen-
 sation. '89, 348 pp. (7 x 10), 7 il., 9 tables, about
 $53.75.

- Antonak, Richard F. & Hanoch Livneh—THE MEA-
 SUREMENT OF ATTITUDES TOWARD PEOPLE
 WITH DISABILITIES: Methods, Psychometrics and
 Scales. '88, 326 pp. (8½ x 11), 2 il., 10 tables,
 $48.25.

- Krush, Anne J. & Kathleen A. Evans—FAMILY
 STUDIES IN GENETIC DISORDERS. '85, 254 pp.
 (7 x 10), 32 il., 6 tables, $34.75.

- Shearer, William M.—ILLUSTRATED SPEECH AN-
 ATOMY. (3rd Ed.) '79, 152 pp. (6¾ x 9¼), 91 il.,
 $25.50.

- Thunthy, Kavas H.—DENTAL RADIOGRAPHIC
 DIAGNOSIS. '88, 554 pp. (6¾ x 9¼), 889 il., 1
 table, $58.75.

- Maloff, Chalda & Susan Macduff Wood—BUSINESS
 AND SOCIAL ETIQUETTE WITH DISABLED PEO-
 Have Impairments of Mobility, Vision, Hearing, or
 Speech. '88, 162 pp. (7 x 10), $30.25.

- Perlman, Alan M.—WRITE CHOICES: New Options
 for Effective Communication. '89, 82 pp. (7 x 10),
 $19.75.

- Wicka, Donna Konkel & Mervyn L. Falk—ADVICE TO
 PARENTS OF A CLEFT PALATE CHILD. (2nd Ed.) '82, 80
 pp., 6 il., $15.75.

- Yules, Richard B.—ATLAS FOR SURGICAL REPAIR OF
 CLEFT LIP, CLEFT PALATE, AND NONCLEFT VELOPHAR-
 YNGEAL INCOMPETENCE. '71, 212 pp. (8½ x 11), 339
 il., $29.75.

- Smith, George P., II—FINAL CHOICES: Autonomy
 In Health Care Decisions. '89, 234 pp. (7 x 10),
 about $37.75.

- Jain, K. K. & B. Fischer—OXYGEN IN PHYSIOLOGY
 AND MEDICINE. '89, 380 pp. (6¾ x 9¾), 66 il.,
 about $64.75.

- Humphrey, James H. & Joy N. Humphrey—CON-
 TROLLING STRESS IN CHILDREN. '85, 210 pp.,
 $26.25.

- Harrison, Robert V.—THE BIOLOGY OF HEARING
 AND DEAFNESS. '88, 442 pp. (6¾ x 9¼), 268 il.,
 3 tables, $74.25.

Books sent on approval • Catalog sent on request • Write or call (217) 789-8980

2600 South First Street Springfield • Illinois • 62794-9265
What does Easter Seals do after Easter?

The same thing we do before Easter... and before and after Christmas, the Fourth of July, Passover and Thanksgiving Day. Our services for people with disabilities continue all year long.

Our services include:

- Physical, occupational and speech-language therapies
- Vocational evaluation and training
- Camping and recreation
- Psychological counseling
- Prevention and screening for disabling conditions
- And much more.

Easter and other Holidays come and go. But Easter Seals is helping people every day to live independent and productive lives.

For more information on how you can be a part of it all, contact the Easter Seal Society in your community.

National Easter Seal Society
70 East Lake Street
Chicago, IL 60601
312/726-6200 (Voice)
312/726-4258 (TDD)
THE CLEFT PALATE JOURNAL
CELEBRATES ITS 25TH ANNIVERSARY
with the publication of the
CPJ 25-YEAR CUMULATIVE INDEX
Indexed by Subject and Author
Available in February 1990
ORDER NOW AND RECEIVE FREE POSTAGE AND HANDLING
(a $2.50 value)

Please send me ______ copy(s) of the CPJ 25-YEAR INDEX at $25.00 per copy (add $2.50 postage and handling per copy for orders sent after January 1, 1990).
Name ________________________________
Address __
City __________________ State ______ Zip ______ Country __________
Total Amount Enclosed: ____________ Make check payable to “ACPA”. Payment must be made in U.S. funds and drawn on a U.S. bank branch. Mail order form and payment to:
ACPA
CPJ-25
1218 Grandview Avenue
Pittsburgh, PA 15211

Questions???? Call (412)481-1376.
"...this is an amazingly comprehensive text."
"The writing is uniformly excellent."
"...it has succeeded on nearly all counts."

Robert J. Shprintzen (Bronx, NY, USA)

Betty Jane McWilliams, Ph.D.; Hughlett H. Morris, Ph.D.; and Ralph L. Shelton, Ph.D.

This is the authoritative clinical volume on cleft palate speech. The internationally respected authors have prepared an in-depth work that specifically deals with the features, problems and therapy of this communication disorder.

- New chapter on tonsils and adenoids
- Expanded coverage of genetics and craniofacial anomalies
- Thorough revision of surgical approaches
- New section on endoscopic diagnosis
- Dozens of new illustrations

November, 1989, 418 pages, illustrated. (D-3388-5) Price $49.50

Save time, call FREE:
1-800-345-8500, ext. 15. Our hotline is open 24 hours a day, 7 days a week.

FREE for 30 days! Please send my on-approval copy of: McWILLIAMS ET AL (D-3388-5) US $49.50

Bill me, plus shipping charges Payment enclosed MasterCard VISA
Card # ___________ Exp. date ___________
Name ___________________________ Address ___________________________
City __________________ State _______ Zip ________
Business phone __________________

Add me to your mailing list. (No purchase necessary)
Specialty __________________

To properly process Purchase Orders and for more personal service, mail this coupon to: B.C. Decker Inc 3228 South Service Road, Burlington, Ontario, Canada L7N 3H8

30-day approval good in U.S. and Canada. PRICES SLIGHTLY HIGHER OUTSIDE U.S. Outside U.S. and Canada, please pay by check or money order in dollar equivalent. ALL PRICES SUBJECT TO CHANGE. Add applicable sales tax.